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We consider the stationary plane-parallel convective flow, studied in [1], which appears in a
two-dimensional horizontal layer of a liquid in the presence of a longitudinal temperature
gradient. In the present paper we examine the stability of this flow relative to small pertur-
bations. To solve the spectral amplitude problem and to determine the stability boundaries
we apply a version of the Galerkin method, which was used earlier for studying the stability
of convective flows in vertical and inclined layers in the presence of a transverse tempera-
ture difference or of internal heat sources (see [2}). A horizontal plane-parallel flow is found
to be unstable relative to two critical modes of perturbations. For small Prandtl numbers the
instability has a hydrodynamic character and is associated with the development of vortices
on the boundary of counterflows. For moderate and for large Prandtl numbers the instability
has a Rayleigh character and is due to a thermal stratification arising in the stationary flow.

1. Stationary Flow. We consider a two-dimensional horizontal layer of a liquid, bounded by the solid
planes X = +h. On the two planes the temperature is given and varies linearly with the coordinate z:

Ty = Az (1.1)
In a sufficiently long layer a plane-parallel stationary flow appears, having the following structure:

vy =vy =0, v, = v, (),

o =4z -1y (2), p = p,(z,2) (1.2)
The stationary velocity, temperature, and pressure distributions may be obtained from the equations
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Here p is the average density, g is the gravitational acceleration, and v, x, and 3 are, respectively,

the coefficients of kinematic viscosity, thermal diffusivity, and thermal expansion. On the boundaries of
the layer we have

=0, T,=0 (z=-4h (1.4)
In addition, we assume the closed flow condition to be satisfied:

h
\ vdz =0 (1.5)
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From the Egs. (1.3), with the boundary conditions (1.4) and (1.5), we determinc the stationary flow [1]
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The flow consists of two horizontal counter flows. The form of the velocity distribution turns out to
be of the kind which appears in the case of a vertical layer, the boundaries of which are maintained at dif-
ferent temperatures. It can be expected that for a sufficiently large pressure intensity (i.e., for a suffic-
iently large gradient A) a hydrodynamic type of instability will arise.

From the distribution of temperature it follows that, although for a given z there is no transverse
temperature difference between the layer boundaries, the flow leads to the formation of two layers in the
liquid, in the interior of which there is a potentially unstable temperature stratification. These layers are
located close to the upper and lower boundary planes. For a sufficiently large vertical temperature differ-
ence in these layers (proportional to A% we can expect an instability of Rayleigh type to appear.

2. Equations for the Perturbations. Method of Solution. To study the stability of the stationary re-
gime (1.6), we consider the perturbed flow vy+v, T+ T, p,+p, where v, T, and p are small perturbations of
the plane-parallel flow. We introduce the following units of measurement for distance, time, velocity, tem-
perature, and pressure: h, h%y, g8Ah%y, Ah and pgBAh®. In dimensionless form the equations for small
perturbations are

ov /ot - Gl(vw) vo + (VoV) VI = — vp + Av + Ty (2.1)
AT | 8t 4- G vy Ty 4- vov Tl = P-IAT (2.2)
divy =0 (2.3)

Here v is a unit vector, directed vertically upwards, G = g[iAh“/u2 is the Grashof number, P =v/y is
the Prandtl number, and v, and T, are the dimensionless unperturbed velocity and temperature profiles

ve = 1/6 (z* — 1), Ty = z L+ GPr,,
1, = 1/360 (32z° — 1023 + Tz) (2.4)

The perturbations satisfy the homogeneous boundary conditions
v=0,T=0 (z=+1) (2.5)

We consider two-dimensional perturbations. In this case the velocity components vx and vy are dif-
ferent from zero and all the quantities are independent of the coordinate y. Introducing "normal" perturba-
tions of the stream function and of the temperature, namely,

Y = @ (z) exp (— At - ikz), T = 0 (z) exp (— At + ikz) (2.6)

we obtain for the amplitudes ¢ and 6 the spectral problem

Abg — kG (voAp — v’g) — ik = — AAg (A = d? / di? — ?) 2.7)
P-1AB — kG (v — GP1y'9) — Gop' = — AB (2-8)
¢=¢ =0,0=0 (2=11) (2.9)

The decrement A, depending on the parameters G, P, and the wave number k, is a characteristic num-
ber of the boundary-value problem (2.7)-(2.9).

We note here the differences between the boundary-value problem (2.7)~(2.9) and the problem which
arises in studying the stability of a stationary convective flow between vertical planes, heated to a differ-
ent temperature [2]. One of these differences is that in the heat conduction Eq. (2.8) a new term, Gpr» is
present; this term describes the convective heat transfer in the field of the longitudinally unperturbed tem-
perature gradient. The second difference is in the form of the lift force term in the equation of motion
(2.7); in the case considered the lift force is perpendicular to the planes. Another difference is that the
unperturbed temperature has a more involved distribution over a cross-~section.

Just as in the case of a flow between parallel plates heated to different temperatures [3-6), we solve
the amplitude problem by applying Galerkin's method. We write the amplitudes @ and 6 in the form of the
expansions

79



N—1 M—1
9= 2 0¥ 0= D bl 2.10)
n=0 m=0

As the basis functions ¢p and 6y, we use the normalized amplitudes of the perturbations in the fixed
layer of liquid; these amplitudes are characteristic functions of the boundary-value problems

AA(P:L = - P’nA(pnv Pn (J_— 1) = (Pn' (i 1) =0
PIAO, = — v Oy, 0, (=1 =0 (2.11)

In the approximations (2.10) we retained 10-20 of the functions appearing in the expansions of ¢ and 6.
A standard procedure leads to a system of linear homogeneous equations for the coefficients a, and by ; the
characteristic decrements A = A(G, P, k) are obtained from the condition for the solvability of this system.

3. Perturbation Spectra and Stability Boundaries. Depending on the value of the Prandtl number, the
flow instability is stipulated by two qualitatively different mechanisms.

For small values of the Prandtl number, as well as in the limiting case P — 0, the instability is as~
sociated with hydrodynamic perturbations of monotonic type. Figure 1 presents the spectrum of decrements
for fixed values of P = 0.1 and k = 1.3. Shown plotted are the real parts of the decrements Ay as functions
of the Grashof number. The dashed curves refer to branches of hydrodynamic type (u levels), while the
solid curves refer to thermal branches (v levels). The dash~dot curves denote common real parts of com-
plex-conjugate decrements, formed from the merging of a pair of real levels.

At points where the real branches merge, pairs of oscillating perturbations are formed. Their phase
velocity (in units of maximum velocity of the unperturbed flow) is connected with the imaginary part of the
decrement Aj through the relationship ¢ = 9v32j/kG. As G increases, the phase velocity increases mono-
tonically; for example, when G = 1000, the phase velocity of the oscillating perturbations formed from the
merging of the real levels uy and 4y has a value c = 0.5.

The lower level ug, which stays real, changes its sign at the critical value of the Grashof number; the
flow becomes unstable relative to a perturbation possessing a zero phase velocity. By varying the param-
eter k, we can obtain the neutral stability curve G(k). Figure 2 presents a family of neutral curves of mono-
tonic instability for certain values of P (curves 1, 2, 3, 4, and 5 refer, respectively, to the values of P =
0.01, 0.05, 0.1, 0.125, 0.15). When P = 0 (see [3, 4]), the minimum critical Grashof number Gy =495. 1t
can be seen that as P increases the gstability is increased. Moreover, the critical wave number ki, de~
creases insignificantly.

A numerical study of the form of the neutral perturbations for small P shows that the total motion,
formed from the imposition of a perturbation on the fundamental flow, constitutes a system of fixed vor-
tices, periodic along the z axis, on the boundary of the counter flows.

The stabilizing effect with an increase in P is associated with the fact that for finite P in the layer
there is a stable temperature stratification in the central part of the channcl. Heating from above makes
the development of vortices difficult. An analogous stabilizing effect was noted in a study of the stability of
a Poiseuille flow in a horizontal channel heated from above {7, 8].
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The flow instability which arises for moderate and large Prandtl
numbers is qualitatively of a different naturc. An example of a spec-
trum of decrements is shown in Fig. 3 (P =10, k =4). The instability
has an oscillatory character and is generated by a complex-conjugate
pair of decrements formed in the merging of the thermal levels vy and
vy. At the critical point a pair of increasing perturbations arises, which
differs by the sign of the phase velocity. The perturbation with the phase
velocity ¢ < 0 propagates in the form of a wave along the upper (relative
to the more strongly heated) {low, while the perturbation with ¢ > 0 is
carried away by the lower (colder) flow.
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Fig. 5

The neutral curves G(k) are shown in Fig. 4; Curves 1, 2, 3,4, 5
and 6 correspond to the Prandtl numbers P = 1.5, 3, 5, 10, 25, and 50.
The most "dangerous" perturbations are the short-wave perturbations with k;yy =4. With increasing P, the
minimum critical Grashof number Gy decreases, and for large P we have the asymptotic relationship

G, = 94/ P (3.1)

In this region of Prandtl numbers the stability boundary is determined by the critical Rayleigh num-
ber Rn] = Gmp = 964.

The ncutral critical perturbations have an oscillating character. Their phase velocity ¢y (at a neu-
tral curve minimum) depends weakly on P. As P increases from 0.6 to 50, ¢y, grows monotonically from

0.67 to 0.806.

Perturbations resulting in an instability of the type discussed have a cellular structure and are cha-
racterized by a delinite localization in the flow. Perturhations with a negative phase velocity are localized
in the upper part of the layer, where the region of unstable temperature stratification is located. These
perturbations lead to the formation of waves propagating along the upper flow; the lower flow is practically
unperturbed. Perturbations with a positive phase velocity constitute cells, concentrated in the unstably
stratified lower layer, and their imposition on the main flow results in waves propagaling along the lower

flow.

The results given here confirm the fact that for large values of the Prandtl number P the instability
is associated with the presence in the flow of potentially unstable zones for the distribution of temperature.
Cellular perturbations arising in these zones are carried away by the main flow. The critical situation for
the flow is determined by the critical Rayleigh number (3.1). As a characteristic of the flow, we can in-
troduce, along with the Rayleigh number R determined in accord with the longitudinal gradient, also a Ray-
leigh number Ri, determined according to the transversc temperature difference on the boundaries of the
(upper or lower) unstably stratified layer and its thickness. It is evident from the form of the unperturbed
temperature profile (1.6) that these Rayleigh numbers are related as [ollows: Ry =const R%, The formula
(3.1) means that Ry is a critical parameter, serving as a typical criterion of Rayleigh instability. Local~
ization of the perturbations in one of the unstably stratified layers is typical. With it there is associated a
characteristic wave length for the cells which arise (kj=4), being found to be of a thickness on the order
of a stratified layer.
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The composite results, which relate to the stability boundaries, are shown in Fig, 5. Curve I shows
the dependence of the minimum critical Grashof number Gpy, on the Prandtl number P for monotonic per-
turbations of a hydrodynamic character. Curve II relates to the Rayleigh instability mechanism.

The results presented here refer to the case of two-dimensional perturbations. For the problem con-
sidered there are no transformations, which make it possible to reduce a three-dimensional problem to a
two-dimensional one (this is in contrast to the case of a layer with a transverse temperature difference, for
which such transformations are available; see {9]). The problem concerning the behavior of three-dimen-
sional perturbations requires a separate treatment.

LITERATURE CITED

1. R. V. Birikh, "On thermocapillary convection in a horizontal layer of a liquid,” Zh. Prikl. Mekhan. i
Tekh. Fiz., No. 3 (1966).

2. G. Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of an Incompressible Liquid [in Russian],
Nauka, Moscow (1972).

3. R. V. Birikh, "On small perturbations of a plane-parallel flow with a cubic velocity profile,"” Prikl.
Matem. i Mekhan., 30, No. 2 (1966).

4, R. N. Rudakov, "Perturbation spectrum and stability of convective motion between vertical planes,”
Prikl. Matem. i Mekhan., 31, No. 2 (1967).

5 R. V. Birikh,.G. Z. Gershuni, E. M. Zhukhovitskii, and R. N. Rudakov, "Hydrodynamic and thermal
instability of a stationary convective motion," Prikl. Matem. i Mekhan., 32, No. 2 (1968).

6. R. V. Birikh, G. Z. Gershuni, E. M. Zhukhovitskii, and R. N. Rudakov, "Stability of a stationary con-
vective motion of a liquid with a longitudinal temperature gradient,” Prikl. Matem. i Mekhan., 33,
No. 6 (1969).

7. K. S. Gage and W. H. Reid, "The stability of thermally stratified planc Poiseuille flow,” J. Fluid Mech.,
33, Part 1 (1968).

8. K. S. Gage, "The effect of stable thermal stratification on the stability of viscous parallel flows," dJ.
Fluid Mech., 47, Part 1 (1971).

9. G. Z. Gershuni and E. M. Zhukhovitskii, "On the stability of a plane-parallel convective motion rela-
tive to three-dimensional perturbations,” Prikl. Matem. i Mekhan., 33, No. 5 (1969).

82



